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This proof will follow along the lines of [Mar16, Chapter 8], but will flesh out some of the details, as well as
outlining potential subtleties. First, we’ll outline a fact about the structure of geodesics laminations.

Complementary regions of geodesic laminations

Consider a geodesic lamination λ on a surface S. We’re interested in what the connected components of S \ λ
look like. Let T be a connected component of S \λ. We consider the metric completion of T with the path metric
induced by the hyperbolic metric. This completion gives us a finite volume hyperbolic manifold with boundary,
such that the boundaries are totally geodesic. If a boundary component is a closed geodesic, we know what it
looks like, i.e. a circle. When the boundary component is an open geodesic, then it forms a spike, i.e. if we denote
by γ the boundary geodesic, γ stays within a bounded distance of another geodesic boundary component, quite
like the edges of ideal polygons do.

Figure 1: The complementary regions have spikes and possibly genus. This image was taken from [Bon01].

By doubling along the geodesic boundary, we can see that any such component must have some finite genus,
and a finite number of spikes. Furthermore, the boundary of a complementary region which has positive genus
must deformation retract onto a non-trivial simple closed geodesic.

Understanding finite order and reducible mapping classes

Finite order mapping classes are, as the name suggests, finite order elements in the mapping class group. Re-
ducible elements are those elements which leave some multicurve invariant. To understand how the mapping
class group acts on the Teichmüller space, we need to understand how it acts on ML. To that effect, we have the
following theorem.

Theorem 1. If ϕ(µ) = µ for some ϕ ∈ MCG(S) and non-zero µ ∈ ML, then ϕ is either reducible or finite order.

Proof. Suppose that the measured laminationµ is not full, i.e. some complementary region is not an ideal polygon.
Since we know exactly what the complementary regions can look like, we know that the boundary deformation
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retracts to simple closed loop γ, for each complementary region that’s not an ideal polygon. Since the boundaries
are fixed by ϕ, each such complementary region has a finite orbit under iterates of ϕ. Let M be the multicurve
given by the orbit of γ. It’s clearlyϕ-invariant, which meansϕ is reducible. The same proof also worksϕ(µ) = λµ
for some λ 6= 1. This will be important later when we’re analyzing Pseudo-Anosov mapping classes.

The second case happens when all the complementary regions are actually ideal polygons. All of these ideal
polygon have finitely many sides, and there are finitely many of them. Furthermore,ϕ permutes the complemen-
tary regions, and possibly reorders their edges, but we can take a sufficiently high power ofϕ (which, by abuse of
notation, we’ll also call ϕ) to assume that ϕ leaves each complementary regions and all the edges invariant. We
claim that this actually means that ϕ is the trivial mapping class.

Consider the preimage µ̃ of µ in H2. Note that all the complementary regions are all still ideal polygons, and
the lifts of complementary regions in S. We now also consider a lift ϕ̃ of the map ϕ. We can choose this lift so it
leaves some complementary region of µ̃ invariant. In particular, it leaves all the edges invariant, which means it
fixes their vertices in ∂H2 fixed. Our goal will be to show that ϕ leaves every leaf in µ̃, invariant, which means
it fixes a dense collection of points on ∂H2, and hence it’s trivial. Note that something like this fails for Dehn
twists∗.

Consider a leaf γ left invariant by ϕ̃, and let τ be a small arc transverse to it. We’ll show that leaves in a small
neighbourhood of γ are also left invariant by ϕ̃. We can parameterize the leaves near γ by the point they intersect
τ at. Pick the leaves intersecting τ in [0, c], where 0 is the point where γ intersects τ . Under ϕ̃, this segment gets
sent to some [0, ϕ̃(c)]. But we know that the transverse measure is preserved, which means that c = ϕ̃(c)†. We
now know that if a leaf is fixed, that sufficiently close by leaves are also fixed. We also know that if an edge leaf
of a complementary region is fixed, so is every other edge leaf of that complementary region. From this, we see
that every leaf in the lamination is fixed, whose endpoints are dense in ∂H2, which means ϕ̃ fixes the boundary,
and hence is the trivial mapping classes.

Pseudo-Anosov mapping classes

We now define (after already having mentioned them a few times) Pseudo-Anosov mapping classes. We define
them simply to be those mapping classes which aren’t reducible or finite order. By Theorem 1, we have that the
Pseudo-Anosov mapping classes act freely on ML. We also know that the mapping class group acts continuously
on Tg = Tg ∪PML. By the Brouwer fixed-point theorem, even a Pseudo-Anosov element must fix some point in
Tg . It certainly can’t fix any point in Tg , otherwise it would turn out to be finite order, which means it fixes some
point of PML, i.e. there exists some measured lamination µ such that ϕ(µ) = λµ. We know by Theorem 1 that
λ 6= 1. Without loss of generality, we can assume λ > 0, and we’ll call relabel the lamination µu and call it the
unstable lamination. We’ll show now that ϕ scales another lamination down by λ−1. The point corresponding
to that in PML is the only other fixed point of ϕ. In this sense, Pseudo-Anosov elements are the analogs of
hyperbolic elements in PSL(2,R).

Theorem 2. Let ϕ be a Pseudo-Anosov mapping class. Then there are two measured laminations µu and µs such that
ϕ(µu) = λµu and ϕ(µs) = λ−1µs for some λ > 1. These laminations are full and minimal, and together they fill Sg .

Proof. We’ve already outlined why we must have at least one such lamination µu. We now show why µu must
be minimal and full. We in fact show that every minimal component of µu must be full. This of course proves
that µu must be minimal, since if it wasn’t we’d have two disjoint full geodesic laminations, which isn’t possible,
since full laminations intersect every other lamination. That means if µu isn’t a minimal lamination, none of its
minimal components must be full, i.e. each minimal component has a complementary region that has genus. For
simplicity, assume there are two minimal componentsµ1 andµ2, and letS1 andS2 be a complementary region for
µ1 and µ2 respectively which isn’t an ideal polygon. Then we know that the boundary of Si deformation retracts
onto a non trivial curve. In fact, since the boundaries of S1 and S2 are disjoint, we can deformation retract them
∗Although it is true that a Dehn twistϕ fixes a curve γ, it’s not true that the corresponding lift ϕ̃ to H2 fixes every lift of γ. It only fixes

one, based on our choice of lift, and its action on ∂H2 is a hyperbolic Möbius transformation, with axis the lift fixed by ϕ̃
†This is the point where the same proof no longer works for Pseudo-Anosov mapping classes.
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onto curves whose intersection number is 0. Varying this over Si and Sj , we find a multicurve preserved by ϕ,
which contradicts the fact that it’s Pseudo-Anosov. We thus see that µu must be minimal and full.

After replacing ϕ with a high enough power, and lifting to the universal cover, we may assume the lift pre-
serves a complementary polygonal region R. The vertices of R in ∂H2 are fixed points of the lift ϕ̃. Consider
the sides s1 through sk ofR. Since the lamination µu is minimal, these leaves must be dense in µ̃u, which means
we can find a sequence of leaves in µ̃u which approach each si. None of these leaves share an endpoint with si,
because if they did, that would violate Lemma 8.3.8 in [Mar16], since we’d end with three geodesics incident on
a single boundary point. Furthermore, we also know that the vertices of R are local attractors for ϕ̃, since the
pushforward of the measure increases the mass.

Now consider the map ϕ̃ restricted to the arc between two consecutive vertices of R. The map must have a
fixed point in the interior. If it had two fixed points in the interior, we’d have an invariant box, which means its
measure stays the same, but the contradicts the fact that ϕ̃ increases measure by a factor of λ. This means we
have only one fixed point, and it must be a repelling fixed point.

Consider the geodesic lamination given by taking geodesics going from the repulsive fixed points, and take
the closure of its Γ orbit. That is another geodesic lamination, say µs preserved by ϕ, which means it must be
minimal and full. The next thing we need to show is that µs admits a projective transverse measure left invariant
by ϕ. Consider a lift of a closed geodesic close the attracting points of ϕ−1‡. Looking at the Dirac mass γ on that
closed geodesic as an element ofPML, we see that some subsequence ofφ−k([γ]) converges with support exactly
equal to µs. Consider all such measures, with the additional property that they have zero self intersection. That
means they all lie in ML, and form a convex cone, which means once we projectivize them, they form a finite
dimension disk. The mapping class ϕ acts continuously on them, which means there is some fixed point, which
shall be the measure we assign to µs. We thus have that ϕ(µs) = λ′µs for some λ′.

Note that µs and µu have positive self intersection. We thus have the following equality.

0 < i(µu, µs) = i(ϕ(µu), ϕ(µs)) = λλ′i(µu, µs)

This means λ′ = λ−1, and that proves the result.
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‡One way to see that such a geodesic exists is to use the Anosov closing lemma. But this is probably overkill, and there’s surely an
easier way of doing this.
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