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1 Homotopy Excision Theorem

The homotopy excision theorem is a fairly important and useful result in homotopy theory,
and one of its corollaries is the fundamental result in stable homotopy theory.

1.1 Statement and proof of the excision theorem

We'll need alemma (without proof) and a couple of definitions before we state the theorem.

Lemma 1.1 (Long exact sequence of relative homotopy groups). For a pair (X, A), the homo-
topy groups fit into the following long exact sequence.

S (A) B (X) D (X, A) B (A)
The maps i, and j, are induced by the inclusions.

Definition 1.1 (n-connectivity for maps). A map f from the pair (X, A) to (Y, B) is said to
be n-connected if the induced map on the fundamental group f, : 7,(X, A) — 7, (Y, B) is
an isomorphism for ¢ < n and a surjection for ¢ = n.

Definition 1.2 (n-connectivity for pairs). A pair (X, A) is said to be n-connected if i, :
mo(A) — mo(X) is surjective and 7, (X, A) = 0 for all ¢ < n. This is equivalent to saying
that the inclusion map from (A, *) — (X, ) is n-connected (this follows from the long
exact sequence for relative homotopy groups).

With the terms defined, we can now state the theorem.

Theorem 1.2 (Homotopy excision). Let X; and X3 be open subspaces of the space X, such that
X = XjUXy, and Xy = X1N Xy isnot empty. If the pair (X1, Xo) is m-connected, and (X2, X)
is n-connected, then the inclusion map i : (X1, Xo) — (X, Xy) is (m + n)-connected, form > 1
andn > 0.

The idea of the proof is borrowed from May [?] : we will try to fit in the maps we want
to show are isomorphisms, and surjections into a long exact sequence, and try to show that
the third term vanishes in an appropriate range of dimensions. For this, we’ll need another
form of homotopy groups.

Definition 1.3 (Triad homotopy groups). If X is a space, and X; and X, are open subspaces,
such that the basepoint z; lies in X, = X; N Xy, then the triad homotopy groups are
homotopy classes of maps of tetrads of the following form.

(19,1972 x {1} x I, 17! x {1}, J72 x TU Tt x {0})

|

(X7 X17X27I0)

This is only defined for ¢ > 2.
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Lemma 1.3 (Long exact sequence of triad homotopy groups). The triad homotopy groups fit
into a long exact sequence with relative homotopy groups in the following manner.

s 2) 7Tq(X1,X0> Z—*> 7Tq(X, XQ) j—*> Wq(X;Xl,X2> 2) 7Tq_1<X17X0) 14 v

The maps i, and j, are induced by the inclusions, and 0 is the boundary homomorphism, defined by
restricting the map to the face of the cube corresponding to X.

The proof that this sequence is exact is similar to the exactness proof for long exact
sequence of relative homotopy groups, and hence skipped.

Coming back to the excision theorem, we see that the condition m > 0Oandn > 0
forces the map at the level of 7 to be an isomorphism. Furthermore, because m > 1,
by an argument similar to the one in the proof of Seifert-Van Kampen theorem, we get
that m (X, X3) = 0, hence it’s an isomorphism. That means we only need to check for
2 < ¢ < m + n. By the long exact sequence of triad homotopy groups, it’s equivalent to
proving the following theorem.

Theorem 1.4. With the same hypotheses as that of the homotopy excision theorem,
7Tq<X; Xl, X2> = O
forall2 < q <m+n.

Proof. 1t will suffice to prove this result when X is a CW complex, and X1, X5, and X, are CW
subcomplexes. That’s because we can approximate a space by a CW complex up to homo-
topy, and that won’t change the homotopy groups. By our hypotheses on the connectivity
of (X1, Xo) and (X5, Xy), (X1, Xo) contains no relative g-cells i.e. g-cells outside X, for
q < m, otherwise 7, (X, Xo) wouldn’t be 0. Similarly, (X», X,) contains no relative g-cells
for ¢ < n. Furthermore, since we're trying to show a certain map from a compact space is
nullhomotopic, it suffices to consider cases where X is a finite CW complex.

We will prove the result by inducting on the number of relative cells of (X3, X) and
(X2, Xo). Since the base case is the hard part, we’ll show the induction step first. Suppose
we know the result for the triads (X; X7, X) and (X; X;, X'), where X; is obtained by
attaching one more cell to X1, and X’ = X Uy, X» (The first triad satisfies the induction
hypothesis for obvious reasons. The second triad has one relative cell in each component,
so that reduces to the base case.).

By the long exact sequence of a triple, we get exactness in the rows of the following
diagram.

(X1, Xo) —— m(X1, Xo), —— my( X1, X]) —— me1(X], Xo)

J- s I s

Wq(X/,XQ) E— 7Tq(X, XQ) _— 7Tq(X, X/) E— qul(X/,X2>

By the induction hypothesis, the maps « and y are surjective, and d is injective, which means
the map f is surjective. This shows that 7,(X; X5, X5) = 0.



Similarly, if we know the result for (X; X, X)) and (X; X', X3), where X, is obtained
by attaching one more cell to X7, then we have the result for (X; X, X5), since the map
i1 (X1, Xo) = (X, Xy) factors through in the following manner.

(X1, Xo) 2 (X', XD) 3 (X, X,)

By the induction hypothesis, both i;, and is, are surjections, hence their composite i, is a
surjection.

All that is left now is to prove the base case, i.e. when both (X7, X;) and (X3, X,) have
one relative cell. Without loss of generality, let X; = X, U D*, where k > m and X, =
XoUD!, wherel > n. We need to show that the associated map of tetrads is nullhomotopic.

(19,1972 x {1} x I, 17! x {1}, J72 x TU T x {0})

|

(X, XU U Dk,XO U Dl,l'0>

Pick interior points z; € D* and 2, € D'. We then have the following maps of triads.

(X1; X1, Xy —21) = (X — 295 Xy, X — {71, 72}) (1)
(X — Z'Q;Xl,X — {l’l,l‘g}) — (X,Xl,X — {J,’l}) (2)
(X;Xl,XQ) — (X,XLX — {xl}) (3)

The maps labelled[t]and[3]induce isomorphisms at the level of triad homotopy groups. This
is easy to see after observing the fact that D™ with an interior point removed can be homo-
toped to its boundary S"~!. Doing this to the associated disks in map[1] and 3| we see the
isomorphisms. Furthermore, 7,(X7; X1, X7 — x1) = 0 for ¢ > 2: this follows trivially from
the long exact sequence of triad homotopy groups. That means if we show map 2|induces a
surjection at the level of ., we’ll be done.

Pick any map of tetrads f goinginto (X; X;, X —{z1}). We need to show f is homotopic
toamapinto (X —x9; X1, X —{z1, z2}) followed by the inclusion map Let D}, and D}
be sub-disks of radius 3. Using the compactness of 17, it’s easy to divide I into smaller
sub-cubes I? such that if f([2) intersects D¥ /9, it’s contained in the interior of D* and if
it intersects D! /9, it’s contained in the interior of D'. By simplicial approximation, we can
make f homotopic (as a map of tetrads) to a map g whose restriction to the (k — 1) skeleton
of I (with its subdivided cubes as cells) (the (k—1) skeleton could possibly be empty as well)
does not cover DY ,, and similarly, whose restriction to (I — 1)-skeleton does not cover D ,.
Furthermore, we can make sure that we pick an x5 in D! /o such that g~ 1(x3) has dimension
at most ¢ — [ and it does not lie in the image of the (I — 1)-skeleton. Although, this is
intuitively clear, it requires some work, but that will just obscure the proof, so we leave it
be.

Let 7 : I? — I%"! be a projection map that discards the last coordinate, and let K be
the following space.

K=n1lomog ()



This means K has dimensions at most 1 more than g—*(z). We have the following inequal-
ities.
dim K < dim g~ (zq) + 1
<gqg—-1+1
<m-+1

The last inequality follows since [ > n, and ¢ < m + n. And since m < k, and all our
dimensions are integers, that lets us directly conclude dim K < k — 1. This means g(K)
does not cover all of Df ,. We pick #; € D}, such that it does not lie in g(K). It's not too
hard to see that (g~ (z;)) U 017! and w(g~!(x,)) are disjoint (drawing a picture in the
case of I helps visualizing the scenario). Both of these are closed subsets of 7¢~1, hence by
Uryssohn’s lemma, there exists a function v : I~* — I such that the following equalities
are satisfied.

v(m(g  (z1)) UOIT) =0
v(m(g™ (22))) = 1

We use this to define a map & from 77t to I4.
h(r,s,t) = (r,s —s-t-v(r))
Let f': I? — X be defined as f'(r, s) = g o h(r, s, 1). We have the following observations.

h(r,s,0) = (r,s)
h(r,0,t) = (r,0)
h(r,s,t) = (r,s) ifr e 017!

Furthermore, if h(r, s,t) € g~ (1), then v(r) = 0, and hence h(r, s, t) = (r, s). Similarly,
h(r,s,t) € g~'(xq) implies v(r) = 1,and h(r, s,t) = (r, s — st). Thus, g o h is the required
homotopy of tetrads.

O

1.2 Corollaries of the excision theorem
1.2.1 Freudenthal suspension theorem
For any space X, we have the suspension homomorphism, X,, defined as follows.
Yg 7rq<X) — Tg+1 (2X)
Y([f]: 8= X) =[f Aid]

Under certain additional conditions on the space X and ¢, ¥, is an isomorphism. The exci-
sion theorem lets us easily deduce what those conditions are.

Theorem 1.5 (Freudenthal suspension). If X is n-connected, then the suspension homomor-
phism is an isomorphism for ¢ < 2n and a surjection for ¢ = 2n + 1.

Insert image
perhaps?



Proof. Let C', X and C'"_ X be the upper and lower cones of ¥. X. Their intersection is X. The
pairs (C, X, X) and (C_ X, X) are both n-connected (this follows from the fact that cones
are contractible, and the long exact sequence of relative homotopy groups). By the homo-
topy excision theorem, we get that the inclusion of (C, X, X) into (XX, C_X) is an iso-
morphism until 7y, and a surjection for 7, 1. Again, using the long exact sequence of rel-
ative homotopy groups, we get that 7. (C. X, X) & 7, (X), and similarly 7, (XX, C_X) &
Tet1(2X). There is a bit of work involved in showing that this isomorphism/surjection is
actually the suspension homomorphism, but that’s technical, and not too hard. O

1.2.2 Stable homotopy

We now look at the colimit of the following diagram.

S Sqt1 Sqto
g(S%) = mga(S) = me42(S%) = -+

Since S™ is n-connected, after £ steps, the arrows in the diagram become isomorphisms,
which means the colimit of the diagram is what the diagram stabilizes to after  steps. We
call the colimit the ¢ stable homotopy group of S°. From this point on, it’s not too hard to
show that the stable homotopy functor is a nicely behaved functor: in fact, it’s a generalized
homology theory.

2 Comparison theorem for cohomology theories

Theorem 2.1 (Comparison Theorem). If h and k are two reduced cohomology theories satisfying
the (DV) axiom, such that there exists a natural transformation x from h* to k* and x induces a
natural isomorphism from h"(S°) to k™ (S°) for all n, then  is a natural isomorphism of cohomology
theories.

Proof. First, we’ll use a simple reduction. For any pointed space X, we’ll show if x is an
isomorphism from A" (X ) to k" (X ), then x is an isomorphism between A" (X') and k™ (X).
Here, X, is the space X II +, with the basepoint being +. Consider the following cofiber
sequence.

SOL X, > X

The map from S° to X, sends the basepoint of S° to +, and the other point to the original
basepoint of X. This cofiber sequence splits, which means an isomorphism from 2" (X ) to
k"(X ) is equivalent to an isomorphism from i (X) to k(X)) (by the five lemma).

The next step in the proof is to show the isomorphism for finite CW complexes. This
will be done by showing the isomorphism for S™ and D" for all n, and then using the fact
that all finite CW complexes are pushouts of disks and spheres. We have an isomorphism on
all spheres from the suspension isomorphism, and that extends to wedges of spheres. And
since all disks are contractible, we have an isomorphism there as well. This also tells us that
X is an isomorphism from 0-dimensional CW complexes. We’ll proceed by induction at this



point. An n skeleton is defined by the following pushout.

[1s? —s x'»Y

|

1D - X

We then apply the Mayer-Vietoris sequence to the subspaces [ [ D’} and X J(r”_l). Call these
subspaces T and T5. Their intersection T is the wedge of spheres.

}Ln+1(T1) D hn+1(T2) — thrl(To) — hn(X(n)) — hn+1(T1) ©® thrl(TQ) — thrl(To)

I b I I

kn+1(Tl) o) fntl (T2) kn+1(TO) kn(X(n)> /{J"+1(T1) oy kn+1(T2) kn+1(TO)

By the induction hypothesis, all but the middle arrows are isomorphisms, hence by the five
lemma, x is an isomorphism too. This shows x is a natural isomorphism for finite dimen-
sional CW complexes.

The final step is to show this for infinite dimensional CW complexes. This will require the
use of Milnor’s theorem[B.5] For any infinite dimensional CW complex X, take the filtration
consisting of its finite dimensional skeletons. Then we have maps between the following
short exact sequences.

0 — lim,'R9 1 (X™) —— h9(X) — lim, h9(X") ——

Lok b Lo

0 — lim, 'k H(X™) —— k(X)) — lim, k9(X™) ——

1%

By the proof for the finite dimensional case, we have the all but the middle arrow are isomor-
phisms. By the five lemma, we get the middle arrow is an isomorphism too, which concludes
the proof.

O

3 Brown’s representability theorem

In this section, we shall see that all reduced cohomology theories that satisfy the wedge
sum (DV) axiom are representable functors, i.e. they are naturally isomorphic to the hom
functor in the homotopy category hCW.,. In particular, for a given reduced cohomology
theory h*, we’ll construct a sequence of spaces Z(n), which we’ll call a spectrum, such that

h"(X) is naturally isomorphic to [X, Z(n)].



3.1 Spectra and cohomology theories

Definition 3.1 (Q2-Spectrum). A spectrum is a Z indexed sequence of pointed spaces Z(n)
together with structure maps o,, : ¥Z(n) — Z(n+1). If the adjoints of the structure maps,
i.e. the maps g, : Z(n) — QZ(n + 1) are homotopy equivalences, then the spectrum is
called an Q-spectrum.

Proposition 3.1. Given a -spectrum Z, one can define the following functor.
' (X; 2) = [X, Z(n)]

This is a contravariant functor which satisfies the homotopy invariance (H), suspension (S), exact-
ness (E), and the wedge sum (DV) axiom. It is therefore a reduced cohomology theory.

Proof. We'll deal with the axioms one at a time.

Homotopy invariance (H): This is obvious, because we are looking at homotopy classes of
maps.

Suspension (S): We need to show there is a natural isomorphism from A" (X) to h" 1 (£.X).
Note that the adjoint of the structure maps are homotopy equivalences. We therefore
have a natural isomorphism.

(X, Z(n)] = [X,QZ(n+1)]

On the other hand, since ¥ are 2 are adjoints, we have the following natural isomor-
phism.

X, QZ(n+1)] 2 [2X, Z(n + 1)]
Composing the two natural isomorphisms, we get our required isomorphism.

Exactness (E): We need to show for any cofibration i : A — X, the following sequence is
exact.

R"(A) + h"(X) « h" (X/A)
Using the cofiber sequence, we get that following sequence is exact.

(A, Z2(n)] < [X, Z(n)] « [(X/A), Z(n)]

Wedge sum (DV): The functor |-, Z(n)] satisfies (DV) axiom. This is fairly easy to check.
That means h* satisfies (DV) axiom.

Ol
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3.2 Proof of Brown’s representability theorem

Note: This proof is primarily taken from A. J. Tolland’s article[?].

In the previous section, we saw that if we are given an 2-spectrum, we can construct a
reduced cohomology theory using the spectrum. Brown’s representability theorem is the
converse of the previous theorem, i.e. given a reduced cohomology theory which satisfies
the (DV) axiom, it can be represented by an Q-spectrum, which is unique up to homotopy.
This theorem is fairly technical, and will require the use of the theorem on Milnor exact
sequence (theorem|B.35)).

Theorem 3.2 (Brown’s representability theorem). Let h* bea reduced cohomology theory sat-
isfying the (DV) axiom. Then there is an Q-spectrum Z such that h™ is naturally isomorphic to

[ Z(n)].

Proof. The proof will have two main parts. The first part will involve constructing the spaces
Z(n) for each n such that there is a natural isomorphism from 2" (X)) to [X, Z(n)] for all CW
complexes X. The second part will involve constructing the structure maps from ¥ Z(n) —
Z(n+1).

Fix an n € Z. We will construct the space Z(n) as a CW complex, using finite dimen-
sional skeletons Z(n);.. For each k, we will also pick a cohomology class ¢, (k) in h™(Z(n))
such that the map d™ (k) : [S™, Z(n)] — h™(S™) is an isomorphism for m < k and sur-
jectionform = k.

IS8
3
:E
E

3
Eﬂ
=2
= |
%
P
€5
Z

For k = 0, we define Z(n), as follows.

Vo

ach™(S0)

The cohomology group of Z(n), is given by a direct product, since L satisfies the (DV)
axiom.

g H hn SO

aeh" S9)

Pick the following element as ¢,,(0).

H @

a€h™(S0)

Since k = 0, we only need to show that d°(0) is a surjection. Pick any v € h"(S°). Corre-
sponding to this , there’s a copy of SU sitting inside Z(n),. Let f be the inclusion map of
this copy of S” into Z(n)o. Then the induced map on cohomology is the projection map on
the o' coordinate, since the cohomology theory satisfies the (DV) axiom. Applying this
induced map on c,(0), we see that in the o' coordinate, it has «, because of the way we
defined it. This shows the map is surjective.

Show that
this is a

group ho-
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To prove the induction step, suppose we have defined the space Z(n); and ¢, (k) that
satisfy the required properties. Let K, < [S*, Z(n);,] be the kernel of the map d% (k). We
construct the following map.

ky: \/ S¥=Zmpv /s

€Ky, yezn(sk+1)

This map is obtained by taking the wedge of maps from S* to Z(n), which are contained in
K. This is a cofibration . By the (DV) axiom, we have the following cohomology groups.

2y ) s =RmEm) x [ Rst

yeﬁn(sk-s-l) yeﬁn(skﬂ)

From this, we can immediately see that the elements of 1" (Z (M) V'V yhin(srny Sk“) of

the form (¢, (k), ) (where e is any arbitrary element) is in the kernel of ¢%(k). Define
Z(n)k+1 to be the cofiber of the map ¢, (k), and let the map to the cofiber be b, (k). By
the exactness axiom, we have that the following sequence is exact.

B(Em)) 2T zmy x T B 29 TT wres”)

yeﬁn(SkH) €K}

Pick the following element A € [] 7 ge1) hr(SEHL,

A= H o

aehn(Sk+1)

The element (¢, (k), A) lies in the kernel of ¢ (k), which means it lies in the image of b (k).
We define ¢, (k + 1) to be a pre-image of (¢, (k), A). Seeing that the associated map d”"(k +
1) is surjective for m = k + 1 is easy enough. The proof is the same as that in the case
of d2(0).The trickier part is showing injectivity for m < k + 1. Since d” (k) is a group
homomorphism (for M > 1), for m > 1, it will suffice to show the kernel is trivial. Pick '
an element, say [f] in the kernel. We need to show that f is a nullhomotopic map. But at
each step, we coned off the kernel of d(m). That means f is nullhomotopic. This shows
the injectivity and hence the isomorphism for m < k + 1.
Next, we define Z(n) the colimit of the following diagram.

bn(0)

bn (1 bn (2
2O iy, @

Z(n)o — Z(n)y ——

Note that Z(n), are CW subcomplexes of Z(n), in particular, we can appeal to Milnor’s
theorem|[B.5} i.e. the following sequence is exact.

0— ngﬂﬁn—l(zm)k) — h"(Z(n)) — ulgnﬁn(zm)k) -0

Furthermore the element (¢(n)g, ¢(n)1, ¢(n)a, . . .) liesin limy, E"( Z(n)y) since we pick ¢(n) g1
as a preimage of ¢(n),. By exactness, we get a preimage ¢, in h"(Z(n)). We define a map

10



dm . [S™, Z(n)] — h™(S™) which sends [f] to f*(c,). Because of the inductive construc-
tion, we know this is an isomorphism for all m > 0 (To see this, observe that a map from a
compact space like S™ factors through a finite stage in the colimit Z(n)). This can be ex-
tended to a natural isomorphism for all finite CW complexes. This can be done by applying
Mayer-Vietoris to the n — 1 skeleton and the discs being attached and then applying the five
lemma, like we did in section[2] Now that we know how to represent the individual functors
1", we need to construct the structure maps from the suspension homomorphism of the
cohomology theory. Let T, be the suspension homomorphism from h2"(X ) to A" (£.X). If
we set X to be Z(n), we have the following homomorphism.

T, : i (Z(n)) — KHEZ(n + 1))

But this is equivalent to the following homomorphism.

T, : [2(n), 2(n)] — [E2(n), Z(n + 1)]

We do the most obvious thing, i.e. apply T}, to the homotopy class of the identity map, and
we pick a map to be our structure map from the resulting homotopy class.
O

This result enables us to study any reduced cohomology theory by studying its associ-
ated spectrum. This lets us study many cohomology theories that were intractable by the
usual methods, e.g. cobordism, which is represented by the Thom spectrum.

11
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A Definitions and notation

Definition A.1 (Suspension of a pointed space). The suspension XX of a pointed space X
is the smash product S A X.

Definition A.2 (Loop space of a pointed space). The loop spaces QX of a pointed space X
is the set of all pointed maps from S* to X with the compact-open topology.

Definition A.3 (lim'). Let 7" be the category of towers of abelian groups, i.e. N indexed set
of abelian groups G; with maps f; : G; — G,;_1, and maps are set of arrows that make the
whole thing commute . Then lim is a left exact functor from 7" to AbGrp, and we define
lim' to be the first right derived functor of lim.

B Some useful lemmas and theorems

Note: Although we state many of the lemmas here for TOP, they are also true for TOP,,
and the proof is similar.

Lemma B.1. Ifi : A — X is a cofibration (in the category TOP), then the mapping cone C(3) is
homotopy equivalent to X/ A.

Proof. We will first construct the maps to and from C(i) to X/A. The maps from C(i) to
X /A is the map that collapses the cone of A to a point corresponding to A in X/A. Now
consider a map from H : A x I to C(i), such that H contracts A to a point in C'(), starting
from the inclusion of A in X. Let the map j from X to C(i) be the inclusion map. Since i is
a cofibration, we can extend H with the initial condition j toamap J : X x I — C(i). But
J (-, 1) collapses A to a point. That means it factors through a X /A. This gives us a map k
from X /A to C(i).

The fact that these maps are homotopy inverses can be verified using the homotopy
J. O

Lemma B.2. In the category TOP, the following sequence is h-coexact.
AL B o
That means for any space Z, the following sequence of abelian groups is exact.
[A, 2] « [B, Z] + [C(f), Z]

Proof. If an element [c] € [B, Z] goes to 0 in [A, Z], that means co f : A — Z is nullho-
motopic, where c is a representative of [c|. But that means there is some function d € C(f)
such that ¢ = d o i. This shows the exactness of the sequence. O

Lemma B.3. If K is a compact space, let A; be a sequence of spaces where points are closed, and A
is the colimit of the following diagram:

Ao‘—>A1‘—>A2‘—>"'

where all the embeddings are closed, then a map from K to A factors finitely through some A;.

12
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Proof. Let J = f(K)bethe compactimage of K in A. For eachset A;\ A;_1, pick an element
¢; of Jinthe set, if J intersects A; \ A;_;. Since A;’s are closed, that means the subset ¢; has
the discrete topology. Furthermore, since points are closed, the set {Uc; } is a closed subset
of J, hence compact. And compact spaces with discrete topology are finite. That means
only finitely many A;\ A;_; intersect J. This means the map factors through at some finite
stage. O

Theorem B.4 (Alternative characterization of lim'). If F' is an object in the tower category, then
lim" (F) is the cokernel of the following map.

oF . HE — HE
€N €N
ar (90, 91,92, ---) = (90 — f1(91), 51 — fa(g2), . .)

Proof. The first step in characterizing lim' in the following manner is to pick an appropriate
injective resolution. Let F' be a tower of abelian groups and I an injective tower it maps into
via a monomorphism m.

f1

£ f2 f3 fa
Im
1 _[1

y)
<
1

F2 < F3 <
b T

12 13 14
_[2 < 13 <

(2

Fy <
Imo
Iy <

<
S

Without losing any generality, we can assume all the maps iy, in I are surjective. Other-
wise, we just replace I, by @?:0 I;, and have the maps on all but the last coordinate be the
identity. This is important, because we’ll need surjectivity of the maps later. We can now
construct an injective resolution of F' as the following exact sequence.

0= F 2 T34 coker(m) =0

The first derived functor is the homology at lim(coker(m)) of the following sequence.

0 — lim(F) ), lim(7) @), lim(coker(m)) — 0

Now, just like oy was defined in the statement of the theorem, we define a; and coker(m)-
Then we get the following short exact sequence of chain complexes (the rows are exact).

0 0 0

v v N2

0 — [LLF = [, — TI, coker(m) — 0

K 3

ap arg Acoker(m)

~ ~ ~

Fy " [[, I — T, coker(m) — 0

K3 3

0 — 1
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We can apply the snake lemma to get the following long exact sequence.

0 — ker(ap) —™— ker(a;) —L— ker(toker(m))

1o}
—_— N

coker(ap) — coker(ar) —L— coker(Qoker(m)) —= 0

But we see from the definition of lim that the kernels of « are precisely the lim. Thus we
have the following long exact sequence.

0 lim(F) —lim(m) lim (1) —lim(g) lim(coker(m))

0
(/*,

coker(ap) 2+ coker(a;) —L— coker (teoker(m)) — 0

The last step in the proof will be to show that coker(a;) is 0, in which case lim*(F) is
isomorphic to coker(ar). Showing that coker(a;) is 0 is equivalent to showing that «; is
surjective. To see this, pick any element (jo, j1, j2, . ..) € [ [, ;- We need to find an element
(ko, k1, k2, k3, . . .) such that we have the following equalities.

Jo = ko — 11(k1)
J1 = k1 —ia(ke)
Jo = ko —iz(ks)

But notice that we constructed I such that all the i, are surjective. That means this system
of equations can be solved simultaneously and coker(«;) is 0. This shows the result.
O

Theorem B.5 (Milnor exact sequence). If {i,, : X,, — X,41} forn € N are a sequence of
nested (pointed) CW subcomplexes such that X = J,, X,,, and h* is a reduced cohomology theory,
then we have the following exact sequence for all i > 1.

0 — lim'A"1(X,) — B (X) — lim A (X,,) — 0

Proof. We first construct the mapping telescope of the inclusions. We start with the (un-
pointed) space X x R, . We then consider the following subspace S.

S=JXix[ii+1]
ieN
We then quotient S by the subspace * x R, and we use the quotient out space as the base-
point of the pointed mapping telescope T'.

We define two subspaces of the mapping telescope; we’ll apply Mayer-Vietoris to these
subspaces.

Ty = | Xoir x [2i + 1,20 + 2]
1€N
Ty = | Xoi x [26,2i + 1]

€N
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To be more precise, we should be taking open neighbourhoods of these spaces to apply
Mayer-Vietoris, but the open neighbourhoods deformation retract to these spaces anyways,
so it’s alright. Observe that the intersection 7}, of T} and T, is homeomorphic to the wedge
of all the X;. By similar reasoning (although we replace homeomorphism by homotopy
equivalence), we get that T} is homotopy equivalent to the wedge of all the X for odd 7 and
T, the wedge of X for all even i. We consider the Mayer-Vietoris sequence, and use the
(DV) axiom to get isomorphisms.

7 bq

Y (T) ——— hI(Ty) < hU(Ty) & hi(Ty) +—— hITY(T)
[Lien h7(X0) [Tier h9(X2:) @ [ien M (Xais1)

[Tien 9(X2)

We need to determine how the map m, should be defined to make the diagram commute.

We do this by seeing how the map behaves on the basis. First, we take 2o € h9(X,). The

first isomorphism takes it to (z, 0), the map ¢, takes it z — 0 and finally it goes to x. Next, we
see how x; € h9(X) behaves. It first gets sent to (i5x1, 1) and then to iz, — x;. Finally,
the (—1)% sends it to x; — i%x;. Similarly, z, € h9(X,) gets sent to xo — i}y, and so go on
the rest of the basis elements. We now have the following long exact sequence.

RY(T) —— TLow h(Xi) e T h9(X:) —— h9(T)

€N €N

From this, we get the following short exact sequence.

0 +— ker(m,) +— h(T) +— coker(mgy_1) ¢—— 0

From theorem , we see that ker(m,,) is lim,, (h?(X,))and coker(mg_1)islim,,' (h=1(X,)).
This proves the theorem.
O]
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