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1 The Hodge decomposition theorem

1.1 Motivating the Laplacian

In complex analysis, holomorphic functions are the key object of study, not only be-
cause they’re simple to define, but also because they have remarkably nice proper-
ties: although their definition requires them to be differentiable once, they turn out
to be analytic (a regularity property), holomorphic functions defined on a disc achieve
maximum and minimum on the boundary (a maximum principle), bounded holomor-
phic functions on C are constant (a Liouville property), etc. On flat Rn, the closest
analog to holomorphic functions are harmonic functions, i.e. functions f such that∑
i
∂2

∂x2i
f = 0. They are also nice in a similar manner, and satisfy all the mentioned

properties.
One can generalize this notion even further, and define harmonic functions on

Riemannian manifolds (henceforth whenever the word manifold is mentioned without
any adjective, it will be implicitly assumed we’re talking about a compact Riemannian
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manifold with no boundary). Having defined harmonic functions on manifolds, one
would expect them to satisfy similar results. On a compact manifold, since all con-
tinuous functions are bounded, the Liouville type result would force harmonic func-
tions to be constant: this might indicate the study of harmonic functions on compact
manifolds is rather boring, and that is indeed the case. To make things interesting,
one defines the notion of harmonicity for not just functions, but for all differential
forms. One might hope that harmonic forms are not trivial, and at the same time, are
a sufficiently small subset of the set of all differential forms such that it’s easier to
deal with them (after all, the harmonic functions were a one dimensional subspace of
the infinite dimensional space of smooth functions on the manifold). For harmonic
forms however, we won’t really be using any of the nice properties that hold for har-
monic functions. What makes harmonic forms so interesting is that they’re solutions
of some elliptic PDE on manifolds, and it’s a general principle that solutions to elliptic
PDE provide insight into the global topology of the space.

To define the notion for harmonicity for functions and forms on manifolds, we’ll
generalize the operator

∑
i
∂2

∂x2i
(while still calling it the Laplacian), and define har-

monic forms to be the elements in the kernel of the operator.

1.2 Defining the Laplacian for functions and forms

To define the Laplacian for functions on a manifold, we recall an equivalent definition
for Laplacian on Rn, which is the following.

∆f = div(grad(f))

Luckily, both div and grad can be defined on manifolds. Writing out the definitions for
the two operators on manifolds, the expression the Laplacian can be written in terms
of the exterior derivative and the Hodge star operation.

∆f = (?d?)(df)

The above definition of the Laplacian extends verbatim to differential forms of all
degrees. Is this the “right” definition though? As it turns out, it isn’t. There are two
problems with it: the first problem is that when applied to top dimensional forms,
this operator sends everything to 0. This would mean that every top dimensional
form is harmonic, which is something we don’t want, since we would like the space of
harmonic forms to be a finite-dimensional subspace of the space of forms. The second
and more fundamental problem is that this operator is not self adjoint with respect to
the L2 inner product on the space of forms. Luckily, that’s an easy problem to solve:
we just add the adjoint of the operator to the operator. We’ll call this symmetrized
operator the Laplacian. If we denote by δ the operator that takes p-forms to (p − 1)-
forms, given by the expression (−1)n(p+1)+1?d?, then the Laplacian has a particularly
nice expression.

∆f = δdf+ dδf

As it turns out, this operator is not only self adjoint, but also has a finite-dimensional
kernel (the latter fact is a consequence of the Hodge decomposition theorem).
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1.3 Statement of the Hodge decomposition theorem

Now that we have defined the Laplacian on manifolds, we can state the Hodge decom-
position theorem. We shall denote the inner product space ofp-forms on the manifold
by Ep(M), and the subspace of harmonic p-forms by Hp. There is a particularly nice
orthogonal direct sum decomposition of the space Ep(M), which is given by the fol-
lowing theorem.

Theorem 1 (Hodge decomposition theorem). The space of harmonicp-formsHp is a finite
dimensional subspace of the space ofp-formsEp(M), andEp(M) has the following orthogonal
direct sum decomposition.

Ep(M) = ∆(Ep)⊕Hp

Here,∆(Ep) denotes the image of Ep(M) under the operator∆.

In fact, more can be said about the operator ∆ when we restrict it to the space of
smooth functions on the manifold.

Theorem 2 (Hodge theorem part II). The operator ∆ : C∞(M) → C∞(M) has all real
eigenvalues, with all eigenvalues greater than or equal to 0. The set of eigenvalues is a discrete
subset of [0,∞), and the eigenvalues can be arbitrarily large. Furthermore, each eigenspace
is finite dimensional, and the span of all the eigenfunctions is dense in C∞(M) in both the
L2-norm as well as the ‖·‖∞ norm.

An important corollary of Theorem 1 connects the space of harmonic forms to
the De Rham cohomology spaces of the manifold.

Corollary 3. The linear map π that projects closed p-forms to harmonic p-forms is surjective
and π(f) = π(g) if and only if f and g differ by an exact form. This means that the pth De
Rham cohomology space is isomorphic to the space of harmonic p-forms (and the isomorphism
is an easily computable map).

The isomorphism between the space of harmonic p-forms and the pth cohomology
space is particularly useful, as it lets us prove stuff about the dimension of the coho-
mology spaces by proving the same thing for the space of harmonic forms instead. We
shall use this trick very often when we are proving stuff using the Bochner technique.

1.4 Idea of proof

The sketch of the proof we give is based on the proof in Warner’s book ([War10] Ch.
6).

Before outlining the idea of the proof, let’s reiterate what we want to prove. We
want to prove thatEp(M) has an orthogonal direct sum decomposition as∆(Ep)⊕Hp.
This is equivalent to proving that the space (Hp)

⊥ is equal to the space ∆(Ep). As in
most statements asserting equality of two sets, showing the inclusion one way is sig-
nificantly easier than showing the inclusion the other way. In this case, the following
inclusion is fairly easy to show: it simply follows from the fact that ∆ is self-adjoint.

∆(Ep) ⊆ (Hp)
⊥
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The hard part is showing the reverse inclusion, i.e. the following inclusion.

(Hp)
⊥ ⊆ ∆(Ep)

Our goal is now the following: given an element α ∈ (Hp)
⊥, we want to find an ele-

mentω ∈ Ep(M) such that the following equation is satisfied.

∆ω = α (1)

Here comes the ingenious part: for every γ ∈ Ep(M), one can consider the linear
functional lγ : Ep(M)→ R defined in the following manner.

lγ(ψ) = 〈γ,ψ〉

Now suppose we had an ω such that equation (1) was satisfied. Then we can say the
something about the functional lω as well. The functional will satisfy the following
identity for all φ ∈ Ep(M) (as a consequence of the fact that ∆ is self-adjoint).

lω(∆φ) = 〈α,φ〉 (2)

In fact, if some other functional lγ satisfies equation (2), then γ satisfies equation (1).
But equation (2) makes sense for any functional, and not just the functionals corre-
sponding to elements of Ep(M). We shall call functional that satisfies equation (2) a
weak solution to equation (1).

As it turns out, finding weak solutions isn’t too hard. In our case, the fact that a
weak solution to equation (1) exists is simply a consequence of the following lemma,
and the Hahn-Banach theorem.

Lemma 4. If {αn} is a sequence of smooth forms inEp(M) such that‖αn‖ 6 c and‖∆αn‖ 6
c for some fixed constant c and for all n. Then the sequence has a Cauchy subsequence.

Remark. This lemma also proves the first part of theorem 1, which states that the space
of harmonic forms is finite dimensional. That follows from the above lemma and the
fact that bounded sequences have Cauchy subsequences iff the space is finite dimen-
sional.

Finding the weak solution is the first step to solving equation (1). The next step
is showing that the functional lwe obtained that satisfies equation (2) actually comes
from some smooth p-form γ. Then γ is an honest solution of equation 2. As it turns
out, all weak solutions are actually honest solutions, as the following theorem demon-
strates.

Theorem 5 (Regularity Theorem). If the functional l is a weak solution to ∆ω = α, then
there exists γ ∈ Ep(M) such that l = lγ, i.e. l is given by the following expression.

l(β) = 〈γ, β〉

That means that∆γ = α, and hence γ is a solution to the required equation.
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Remark. The regularity theorem has vast generalizations which are routinely used to
prove smoothness of weak solutions to PDEs. These generalizations apply to a large
class of partial differential operators called elliptic operators (the Laplacian is an ex-
ample of such an operator), and all the generalizations say something to the following
effect: if u is a “weak” solution to the equation Lu = f, and f is k-times differentiable,
then u actually is better than a weak solution, it’s (k+ l)-times differentiable, where
l is some positive constant depending on the partial differential operator L.

It’s clear from Theorem 5 that the weak solution we got using the Hahn-Banach
theorem is actually a smooth solution lying in Ep(M). This proves the Hodge decom-
position theorem, modulo the proofs of Lemma 4 and Theorem 5. We will skip those
proofs in this exposition, mainly because it will be a long detour into the realm of
PDEs on manifolds, and we want to get to the geometric consequences as quickly as
possible.

Proving Theorem 2 is much simpler, and simply utilises the min-max method to
compute the eigenvalues of ∆.

This is not the only way of proving the theorem. A different approach is to con-
struct an “approximate inverse” (also called a parametrix) for the operator ∆. That
will show ∆ is what is known as a Fredholm operator, and from that point on, the
proof is just standard functional analysis. The details of this approach can be found
in Griffith’s book ([GH14], Ch. 0, Sec. 6).

1.5 Applications of Hodge decomposition

1.5.1 The Bochner technique

The Bochner technique is a way of proving the vanishing of certain cohomology classes
of a manifold using constraints on the curvature of the manifold. A prototypical ex-
ample of such a result is the following theorem.

Theorem 6. If the Ricci curvature tensor of a manifold M is positive definite, then the first
De Rham cohomology ofM is trivial.

The idea behind the Bochner technique is quite simple. We write down the Lapla-
cian of a form (or a function derived from the form) as a sum of two terms: the first
one is a non-negative term, and the second term is some function of the curvature,
and can be made positive or non-negative by imposing suitable constraints on the
curvature. A concrete example of this is the following formula.

−∆ |φ|
2
= 2

(∑
i

|∇Viφ|
2
+

〈
φ,
∑
i,j

ωi ∧ ι(Vj)RViVj(φ) − ∆φ

〉)
(3)

Here φ is a k-form, {Vi} a local frame field,
{
ωi
}

its dual coframe field, and R is the
curvature endomorphism of the induced Levi-Civita connection on the bundle of k-
forms. By Corollary 3 of the Hodge decomposition theorem, the dimension of the
space of harmonic k-forms and the dimension ofHk(M,R) are the same. That means
if we want to show the kth cohomology space ofM is trivial, it will suffice to show that
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the only harmonic k-form is identically zero. Restricting equation (3) to harmonic
forms, we get the following simplified equation, with which we’ll work.

−∆ |φ|
2
= 2


∑
i

|∇Viφ|
2
+

〈
φ,
∑
i,j

ωi ∧ ι(Vj)RViVj(φ)︸ ︷︷ ︸
F(φ)

〉 (4)

We shall denote the second term on the right hand side as F(φ). We are interested
in the cases when F(φ) > 0 and F(φ) > 0 (the distinction between the two is that
in the former, F(φ) = 0 iff φ = 0). It’s clear that if the F(φ) is non-negative, then
−∆ |φ|

2 > 0. Since we’re working over a closed manifold, the maximum principle
tells us that |φ|2 must be a constant, and as a result, both ∇φ and F(φ) are 0. If the
F(φ) is positive, then this tells us that the space of harmonic k-forms is trivial (where
φ was taken to be a k-form), and hence the kth cohomology is also trivial. Even in the
case when f(φ) is merely non-negative, we can still bound the dimension of the space
of harmonic forms, by using the fact that ∇φ ≡ 0. This means that the value of the
k-form φ at any point x depends only on the value of the form at a fixed base point,
say x0. The value of φ at x is given by parallel transporting the form from x0 to x
along any curve;∇φ ≡ 0 ensures that what we get is independent of the path chosen.
That means the space of harmonic k-forms is of dimension at most

(
n
k

)
, and so is the

dimension ofHk(M,R). We encapsulate this in a theorem.

Theorem 7. If F is non-negative, the kth Betti number ofM for 0 < k < dim(M) is less than
or equal to

(
n
k

)
. If F is strictly positive, then the kth Betti number is 0.

We have so far neglected to address the question of what the geometric meaning
of F(φ) being positive or non-negative is. The Bochner technique wouldn’t be very
interesting if F(φ) > 0 or F(φ) > 0 was an extremely restrictive condition. In the
case of 1-forms, F(φ) has a particularly simple expression.

F(φ) = Ric
(
φ], φ]

)
It is clear from this expression that if the Ricci curvature is positive definite, then
F(φ) > 0, and as a result, the first cohomology will vanish (this is how Theorem 6
is proved). In the case of general k-forms, there’s no simple formula for F(φ), but
there is a bilinear form, called the curvature operator, whose positivity determines the
positivity of F(φ). The positivity of the curvature operator is weakly correlated with
the positivity of the sectional curvature, in a manner which we’ll make precise later.

The curvature operatorQ is a bilinear form defined on the space of 2-forms which
takes two 2-forms and outputs a smooth function.

Q(φ∧ψ, ζ∧ η) =
〈
Rφ]ψ]ζ], η]

〉
From the definition, it’s not too hard to conclude that if the curvature operator is
positive definite, then the sectional curvature is positive. On the other hand, if the
sectional curvature is positive, all we can conclude is that the curvature operator is
positive semi-definite (there are examples where the sectional curvature is positive,
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but the curvature operator is only positive semi-definite). We have the following the-
orem due to Meyer ([Mey71]; also found in [Wu88]) linking the curvature operator to
F(φ).

Theorem 8. If Q is positive definite (respectively positive semi-definite), then F(φ) > 0

(respectively F(φ) > 0).

A consequence of Theorems 7 and 8 is that a space with positive curvature operator
has the same homology as that of the sphere. Which raises the question of whether
a manifold with positive curvature operator is diffeomorphic to a sphere. In the cases
of dimension 3 and 4, Hamilton ([Ham82]) showed that positive curvature operator
indeed does imply that the manifold is diffeomorphic to a sphere.

In whatever we have seen about the Bochner technique, it’s easy to lose sight of the
importance of the fact that all this would have been much harder if we did not have a
way of picking out a harmonic representative from each cohomology class. The Hodge
decomposition theorem played a key role, albeit hidden, in everything we did so far.

1.5.2 Representations of compact Lie groups

LetG be a compact Lie group with a left-invariant metric. We are interested in finding
some of the finite-dimensional subrepresentations of the regular representation ofG,
i.e. G acting by left translation on the Hilbert space L2(G). Let’s focus our attention
on the subspace C∞(G). We have the following group action on this space.

(g ◦ f)(x) = f(g · x)

On this subspace, we also have the operator ∆ taking C∞(M) to itself. Because the
metric is left-invariant, left multiplication is an isometry. And since∆ commutes with
isometries, it commutes with the action of g, giving us the following identity for all
g ∈ G.

∆(g ◦ f) = g ◦ (∆f)

This means that each eigenspace of ∆ is left invariant by the action of G on that sub-
space, which means the action of G on each eigenspace gives a finite-dimensional
representation ofG. This observation is actually fairly useful, and is a key element of
the proof of the first part of Peter-Weyl Theorem.

Theorem 9 (Peter-Weyl Theorem part I). The space of matrix coefficients of all finite di-
mensional representations of a compact Lie groupG is dense in the spaceC∞(G)with the ‖·‖∞
norm.

The theorem is proved by using the previous observations to show that eigenfunc-
tions of∆ are matrix coefficients ofG, and then using the fact that eigenfunctions are
dense in C∞(M).

2 Eigenvalues of the Laplacian

If we consider the full spectrum of the Laplacian, we have so far only considered the
eigenfunctions (and eigenforms) with eigenvalue 0. But part II of the Hodge theorem
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(Theorem 2) tells us that in the case of functions, there are more eigenvalues and
eigenfunctions to consider. As a first step in investigating them, one could look at
the sequence of eigenvalues, and try to glean information about the geometry of the
manifold through that numerical sequence. To misquote Mark Kac ([Kac66]), “Can
one hear the shape of a manifold if it’s played like a drum”. The answer turns out to
be no, as showed by Milnor ([Mil64]).

However, even if one can’t determine the isometry type of the manifold from its
spectrum, it is possible to get an estimate of certain geometric quantities like volume,
diameter and curvature from the spectrum. One can also do the reverse, and estimate
some of the eigenvalues from bounds on the curvature.

Before we look at these estimates, it will be instructional to look at an explicit
description of all the eigenvalues (and the corresponding eigenfunctions) in the case
of the flat torus and the round sphere (this follows the exposition given in Gallot,
Hulin, and Lafontaine’s book [GHL90]).

2.1 Exact computations

Flat torus A flat torus is the quotient of Rn by a lattice Γ of rank n. Using Fourier
analytic methods, we can write down all the eigenfunctions of the Laplacian acting on
the space of complex valued smooth functions (the fact that we’re looking at complex
valued eigenfunctions is not really important; we could just take the collection of real
and imaginary part of each complex eigenfunction and that would give us the collec-
tion of real eigenfunctions). The eigenfunctions are indexed by the elements of the
lattice dual1 to Γ , whose elements we’ll denote by λ∗. The eigenfunctions are given by
the following formula.

fλ∗(x) = exp(2πi〈λ∗, x〉)

The corresponding eigenvalues are 4π2 |λ∗|2.

Round sphere A round sphere Sn is just the sphere of radius 1 centred at origin in
Rn+1 with the induced Riemannian metric. For any function f defined in a neighbour-
hood of the sphere, we can describe the Laplacian ∆ of f (considered as a function on
the sphere) in terms the Laplacian ∆̃ on Rn and ∂

∂r
.

∆f = ∆̃f+
∂2f

∂r2
+ n

∂f

∂r

This expression makes it easy to find some of the eigenfunctions for the sphere. If f is
a homogeneous harmonic polynomial of degree k (harmonic in the sense of ∆̃f = 0,
i.e. harmonic on Rn+1), then f restricted to Sn is an eigenfunction of the Laplacian
with eigenvalue k(k+n−1). It turns out that eigenfunctions of this form are the only
kinds of eigenfunctions on the sphere (the way to prove it is to show that the span of
these eigenfunctions is dense in C∞(Sn)).

One thing to observe in both the examples is that the kth eigenvalue grows as k2.
It turns out that it is a more general phenomenon. The kth eigenvalue of a manifold

1 A lattice dual to Γ is the collection of all elements λ∗ in Rn such that 〈λ, λ∗〉 ∈ Z for all elements
λ ∈ Γ . Since Γ is a full rank lattice, the dual Γ∗ is also a full rank lattice.
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is smaller than ck2, where c is some constant that depends on the manifold (and the
metric).

2.2 Estimates on the eigenvalues

In the case of the torus and the sphere, the eigenvalues were easy to compute because
these spaces either had nice coordinates (and a nice metric with respect to those co-
ordinates), in the case of the torus, or a large amount of symmetry, in the case of the
sphere. In the case of arbitrary manifolds, it’s usually not so easy; we will settle for
estimates on the eigenvalues in terms of geometric properties of the manifold like
curvature and diameter.

One of the key techniques we’ll use to estimate the eigenvalues of the Laplacian is
the min-max theorem.

Theorem 10 (Min-max theorem). Suppose the eigenvalues of the Laplacian are written in
an increasing order, where each eigenvalue is repeated according to their multiplicities.

λ0 6 λ1 6 λ2 6 λ3 6 · · ·

In that case, λk is given by the following expression.

λk = min
U

{
max
f

{
〈f, ∆f, 〉
‖f‖2

∣∣∣∣∣ f ∈ U and f 6= 0

}∣∣∣∣∣ dim(U) = k+ 1

}
We will also need to look at eigenvalues of the Laplacian in geodesic balls on the

manifold. Because geodesic balls have a boundary, the Laplacian on these spaces is not
a self-adjoint operator. However, if we restrict the Laplacian to only those functions
which are zero on the boundary, then the Laplacian becomes self adjoint again (this is
why this boundary condition is of interest).

Consider a manifoldMwhose Ricci curvature is bounded below by some constant
κ, i.e. the following inequality holds for all tangent vectors η.

Ric (η, η) > κ(n− 1) |η|
2 (5)

In this case, it is possible to give an upper bound for the all the eigenvalues, and a
lower bound for the lowest non-zero eigenvalue, and the bounds given are functions
of κ. The upper bound is due to Cheng ([Che75]), and is encapsulated in the following
theorem.

Theorem 11 (Cheng’s theorem). SupposeM is a compact manifold whose Ricci curvature
satisfies inequality (5), and whose diameter isD. Suppose we list out the eigenvalues of ∆ on
M in the following manner,

0 = λ0 < λ1 6 λ2 6 · · ·

where we repeat each eigenvalue according to its multiplicity, then λj satisfies the following
inequality.

λj 6 κλ0

(
D

2(j+ 1)

)
(6)

Here, κλ0
(

D
2(j+1)

)
is the lowest eigenvalue on the open ball of radius D

2(j+1)
on the simply

connected manifold with constant sectional curvature κ.
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The idea of the proof is to find j + 1 disjoint geodesic balls, and look at an eigen-
function corresponding to the lowest eigenvalue in each of the geodesic balls. This
gives a j+ 1 dimensional subspace of C∞(M), and then using a technical comparison
theorem for the eigenvalues on the balls, and the min-max theorem, the inequality
can be obtained.

Inequality (6) may seem a little disappointing because the dependence on κ is not
quite clear. However, we have a fairly simple upper bound on κλ0

(
D

2(j+1)

)
in the case

when κ 6 0. This bound is due to Gage ([Gag80]).

Theorem 12. If κ 6 0, then the following inequality is satisfied.

κλ0 (δ) 6 −aκ+
b

δ2
+

c

sinh2(κδ)
(7)

Here a and b are positive constants, and c a real constant, all of which only depend on the
dimension of the manifold.

Combining inequalities (6) and (7), we see the dependence on the curvature bound
κ, as well as the phenomenon we saw in the case of the torus and the sphere, namely
that the kth eigenvalue isO(k2).

Now that we have obtained upper bounds for λ1, we turn our attention towards
getting a lower bound. The lower bound is given by an inequality due to Lichnerowicz
([Lic58]).

Theorem 13. Suppose M is a compact manifold whose Ricci curvature satisfies inequality
(5) for κ > 0. Then the lowest non-zero eigenvalue ofM satisfies the following inequality.

λ1 > nκ (8)

Surprisingly, this inequality is proved by yet another application of a Bochner style
identity, namely the following one.

1

2
∆
(
|grad f|2

)
= |Hess f|2 + 〈grad f, grad ∆f〉+ Ric (grad f, grad f) (9)

Integrating both sides, and then using inequality (5), one gets the following inequality
from which the result follows.

0 > λ

(
1−

1

n

)
(nκ− λ) ‖f‖2

In fact, it turns out that if equality is achieved in inequality (8), then M is isometric
to the sphere of curvature κ (this result is due to Obata [Oba62]). This would suggest
that lowest non-zero eigenvalue λ1 imposes a fair amount of rigidity on the structure
ofM.

The takeaway from all this is that even though we might not be able to hear the
shape of a drum, we can certainly hear how large and how curved it is.
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