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Abstract

Margulis’ Superrigidity theorem tells us that for a higher rank semisimple Lie groupG, any representation
of a lattice Γ extends to a continuous representation ofG (under reasonably mild conditions). In this talk, we’ll
go through a proof of this fact, and along the way see how this proof combines ideas from Lie theory, dynamics,
and random walks on groups. In particular, we’ll see how a Γ-stationary measure on G/P is constructed, and
combine that with measure proximality to prove Margulis superrigidity.

The Margulis Superrigidity theorem essentially tells us that representations of irreducible lattices in semisim-
ple Lie groups extend to continuous representations of the entire Lie group. Of course, the version as stated isn’t
quite correct: one overkill way to see it is to consider a surface group, which is a lattice in PSL(2,R), a rank 1
Lie group. Each outer automorphism of the lattice induces a representation of the lattice into PSL(2,R). Not
all of these representations can have continuous extensions, since the outer automorphism group of a surface
group is infinite, whereas semisimple Lie groups have finite outer automorphism groups. A version of Margulis
Superrigidity that is true is the following.

Theorem 1 (Margulis Superrigidity). Suppose we have the following.

• G is a semisimple Lie group (inside some SL(n,R)) of real rank at least 2.

• Γ is an irreducible lattice inG.

• H is a connected, non-compact, simple subgroup of some SL(m,R) with trivial center.

• ϕ : Γ→ H is an irreducible representation.

• ϕ(Γ) is Zariski dense inH .

Then ϕ extends to a continuous homomorphism ϕ̂ : G→ H .

This is not the most general version of the theorem, but the proof of this version has all the key ingredients,
and provides some insight into what’s going on in the proof. The proof we’ll be looking at is taken from [Mor01],
and a couple of lemmas about stationary measures are from [Mar91].

The proof consists of two reductions. The first reduction involves reducing the problem of finding a contin-
uous representation of G to finding a G-invariant finite dimensional space of continuous sections of a certain
vector bundle. The next reduction involves reducing the problem to finding just a single A-invariant measurable
section (where A is the maximal abelian subgroup).

G-invariant sections of a flat vector bundle

Let V be the vector space Γ acts on. Combining that action with right multiplication on G, we get a right action
of Γ on G× V , given by the following expression.

(x, v) · γ := (xγ, ϕ(γ−1)v)
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If we quotient out G × V by this action of Γ, we get a vector bundle Eϕ over G/Γ (a vector bundle defined in
this manner is said to be flat). It’s easy to see that sections of this vector bundle correspond exactly to right
Γ-equivariant maps from G to V , i.e. maps ξ that satisfy the following property for all γ ∈ Γ.

ξ(gγ) = ϕ(γ−1)ξ(g)

We can define a right action of G on sections by letting g · ξ(h) = ξ(hg). We would like to focus on finite-
dimensional G-invariant subspaces of sections.

To see how all this helps with constructing a continuous extension ϕ̂, consider the following special case.

Lemma 2. Suppose W is a finite dimensional G-invariant space of sections of Eϕ such that the evaluation map sending ξ
to ξ(e) is a bijection. Then there exists a continuous extension ϕ̂ of ϕ.

Proof. Note that the groupG acts onW , which is a space of sections. We can turn this into an action ϕ̂ ofG on V
by merely evaluating the sections at e. One can then check that if we restrict this action to Γ, the action is exactly
the same as ϕ, which means it’s an extension of ϕ.

The next thing we need to do is drop the assumption that the finite dimensional G-invariant subspace W
is in bijection with V . This is where we use the fact that ϕ is an irreducible representation. Consider W as a
representation ofG. SinceG is semisimple,W breaks up as a sum of irreducible representations ofG. Because Γ
is Zariski dense inG, all of these are also irreducible Γ-representations. The evaluation map at e is an intertwining
operator, which means by Schur’s lemma, we must have that the evaluation map is either an isomorphism, in
which case we’re done by Lemma 2, or the zero map. In that case, by G-invariance, we must have that W is
0-dimensional, which violates our assumptions.

We have thus shown that to find a continuous extension ϕ̂, it suffices to find a non-trivial finite dimensional
G-invariant space of continuous sections of Eϕ. Similarly, to find a measurable extension, it suffices to find a
G-invariant space of measurable sections, which is what we’ll actually do. Note that this doesn’t affect our result,
since measurable group homomorphisms are automatically continuous.

Reducing to the case of finding an A-invariant section

So far, we’ve managed to reduce the problem of finding a continuous/measurable extension ϕ̂ to just finding a
finite dimensionalG-invariant space of sections of Eϕ. Just finding a space ofG-invariant sections isn’t too hard:
one can take any section, and look at its G-orbit. However, that doesn’t guarantee that the space of sections one
ends up getting is finite dimensional. To prove finite-dimensionality, we need to use some ideas from dynamics.
We have the following lemma.

Lemma 3. Suppose H is a closed, non-compact subgroup of the maximal abelian subgroup A. Let W be an H-invariant
subspace of Sect(Eϕ) that is finite dimensional, then 〈CG(H) ·W 〉 is finite dimensional.

Proof. For simplicity, assume that W is 1-dimensional, and a section σ is left invariant by H . Because H is non-
compact, by Moore Ergodicity, we have that the orbit of a lot of points are dense. Since the section is continuous,
it is determined by its value at one point, and hence, the set of allH invariant sections is finite dimensional. Since
〈CG(H) ·W 〉 is a subset of the H-invariant sections, this must be finite dimensional as well.

This lemma gives us a way arguing that the space of sections is finite dimensional we get when we just look
at the span of the orbit under some group elements. To make it work in our case, where we want to look at theG
orbit of some section, we need the following Lie theoretic lemma, which we won’t prove.

Lemma 4. IfG is a semisimple Lie group of rank greater than or equal to 2, then there exist closed subgroups {L1, . . . , Lr}
such that the following conditions hold.

1) G = LrLr−1 · · ·L1.
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2) The groupsHi := Li ∩A andH⊥i := CA(Li) are non-compact.

Using Lemmas 3 and 4, we can find a finite dimensional space ofG-invariant sections. To do so, we start with a
continuous/measurableA-invariant sectionσ. LetV0 be the span ofσ. We iteratively defineVi to be 〈Li ·A·Vi−1〉.
Clearly, Vr is the G-span of σ. To show that all the Vis are finite dimensional, we induct. Suppose Vi−1 is finite
dimensional. By the induction hypothesis, Vi−1 is Li−1-invariant, and henceHi−1-invariant. SinceA commutes
with everything in Hi−1, Lemma 3 tells us that 〈A · Vi−1〉 is finite dimensional. This finite dimensional space of
sections is H⊥i -invariant, and hence Li-invariant.

Finding an A-invariant section

Let us restate our goals now that we have made the two reductions we needed to.

Theorem 5. Suppose we have the following.

• G is a semisimple Lie group (inside some SL(n,R)) of real rank at least 2.

• Γ is an irreducible lattice inG.

• H is a connected, non-compact, simple subgroup of some SL(m,R) with trivial center.

• ϕ : Γ→ H is an irreducible representation.

• ϕ(Γ) is Zariski dense inH .

Then there exists a non-zeroA-invariant measurable section ofEϕ, or equivalently, a right Γ-equivariant measurable function
fromG/A to Rn, which is the vector space on whichH acts.

To prove the reduced version of Margulis Superrigidity, we’ll do something quite strange. Rather than im-
mediately focusing on G/A, we’ll focus on G/P , where P is the minimal parabolic subgroup. When G is just
SL(n,R), P is the space of upper triangular matrices. The reason why we look at G/P is the following: this
space can be identified with the space of flags in Rn, for SL(n,R). The spaceG/P ×G/P can be identified with
pairs of flags in Rn. We can now look at the subspace of pairs of flags that lie in general position: this subspace
forms a full measure subset ofG/P ×G/P , andG acts transitively on this space. Furthermore, the stabilizer of
such a pair of flags in general position is exactlyA, which means that up to a set of measure 0,G/A ∼= G/P×G/P .
This explains why we need to find a measurable section rather than a continuous one.

We now just need to find a right Γ-equivariant map from G/P × G/P to W = Rn. It might help to focus
on one factor at a time. Let’s try to find a Γ-equivariant map from G/P to W . It might help to note that P is a
solvable subgroup of G, hence amenable. That means we can try and use Furstenburg’s lemma, which states the
following.

Lemma 6. IfP is a closed, amenable subgroup ofG, and Γ acts continuously on a compact metric spaceX , then there exists
a Borel measurable map fromG/P to Prob(X) which is Γ-equivariant, except on a set of measure 0.

Let’s see how we can use this lemma in our situation. We have an action of Γ on W , but that certainly isn’t
a compact metric space. However, P(W ) is a compact metric space on which Γ acts. This means we get a map
ξ̂ : G/P → Prob(P(W )) which is Γ-equivariant. This clearly isn’t good enough, since we wanted a map into
W , and not Prob(P)(W ). However, if we could upgrade this map into a map ξ from G/P to P(W ), that would
suffice, since we could consider the dual map from G/P to P(W ∗), and take the tensor product of those maps.
That would give us a map into the following space.

ξ ⊗ ξ∗ : G/P ×G/P → P(W ⊗W ∗) ∼= P(End(W ))

We could lift this map up to a map to just End(W ) by fixing the trace to be 1 (there is some work involved in
showing that this only leaves out a set of measure 0). Once we have that, we get a representation of G acting on
End(W ), but we can then look at each of the irreducible components separately, and get what we want.
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That means most of the hard work of the proof is really concentrated in upgrading the map ξ̂ : G/P →
Prob(P(W )) to a map ξ : G/P → P(W ). One reasonable way of upgrading ξ̂ would be to show that its image
lies in the set of Dirac measures up to a set of measure 0.

We do this in the most absurd way possible: we pick a random sequence of elements γi in the group Γ. We
apply these elements to a point p in G/P . Since G/P is compact, after passing to a subsequence, we get a con-
vergent sequence. Also, since the action is equivariant, we can look at the orbit of the corresponding point in
Prob(P(W )), and if we can show that such a sequence converges to a Dirac mass, then we’ll be done.

In short, we’ll look at the orbit of a probability measure in Prob(P(W )) and show that it converges almost
surely to a Dirac mass. To do this, we’ll prove that the action of Γ on P(W ) is proximal.

Lemma 7 (Proximality of the Γ-action). For any [w1] and [w2] in P(W ), there exists a sequence {γn} in Γ such that
d(γn[w1], γn[w2]) converges to 0.

Proof. Pick a diagonalizable elementγ ∈ Γ which has a unique eigenvalue of maximal absolute value. Without loss
of generality, we can assume it’s a simple eigenvalue, otherwise, we just look at the appropriate exterior power.
In the case of SL(2,R), this corresponds to a hyperbolic element in Γ. We form a basis using the eigenvalues of γ,
and denote the largest eigenvector by v1. Clearly, for any two vectorsw1 andw2 with a non-zero v1 components,
γn[wi] converges to [v1]. For something with a zero v1 component, we multiply bothw1 andw2 with some δ such
that δwi has a non-zero v1 component, and then the result follows.

We can in fact strengthen the previous argument for measures on P(W ).

Lemma 8 (Measure proximality). Let µ be any measure on P(W ). Then there exists a sequence {γi} in Γ such that γ∗i µ
converges to a Dirac mass.

In particular, the above lemma also shows that there is no Γ-invariant probability measure onP(W ). However,
if we pick a probability measure ν on Γ, then there is a probability measure µ on P(W ) which is invariant on
average. To be more precise, it satisfies the following identity.∑

γ∈Γ

ν(γ)γ∗µ = µ

What we do now is perform a random walk on Γ with respect to the probability ν, and look at the orbit of µ under
this random walk. As it turns out, for almost every random walk, the orbit of µ goes to some Dirac mass.

Theorem 9 (Mean proximality). Assume that ν is supported on all of Γ, and µ is a ν-stationary probability measure on
P(W ). Then for almost every random walk, (γ1 · · · γn)∗µ converges to some δc.

Proof. First of all, note that the sequence of random variables (γ1 · · · γn)∗µ forms a bounded martingale, which
means it converges almost surely. Thus, to show that it converges to a Dirac mass, it suffices to show convergence
along a subsequence. To do this, pick the sequence {gi} such that g∗i µ converges to a Dirac mass. We would like to
say that almost every random walk contains a subsequence whose last element is gi. This happens almost surely
because all the gi have positive ν-mass. If we look at the orbit of µ under this subsequence, it converges to some
point mass, which proves our claim.

Now we have everything we need to prove our claim rigourously. Consider a Lebesgue class measure µ on
G/P which is ν-stationary. We look at the following measure on P(W ).

µP(W ) =

∫
G/P

ξ̂(x)dµ(x)

This is clearly ν-stationary, since µ is. We look at the distance between (γ1 · · · γn)∗µP(W ) and δP(W ). By means
proximality, this distance goes to 0. By the virtue of it being ν-stationary, we see that this distance equals the
distance between ξ̂(x) and δP(W ), which means it must be 0. This proves our result, and by reduction, concludes
the proof of Margulis Superrigidity.

4



References

[Mar91] Gregori A Margulis. Discrete subgroups of semisimple Lie groups, volume 17. Springer Science & Business
Media, 1991.

[Mor01] Dave Witte Morris. Introduction to arithmetic groups, 2001.

5


